P216 Mathematical Physics
 Quiz 1, October 19 2017, Time: 90 minutes
 Solve 8 problems out of 10

1. If \vec{A} and \vec{B} are constant vectors, show that $\vec{\nabla}(\vec{A} \cdot(\vec{B} \times \vec{r}))=\vec{A} \times \vec{B}$. Hint: cyclicity of triple products.
2. Consider the vector $\vec{E}=r^{n-1} \vec{r}$. Verify Gauss' theorem for the volume and surface of a sphere of radius R.
3. Consider the vector $\vec{A}=\rho \widehat{\varphi}+z \widehat{z}$ where $\widehat{\varphi}$ and \widehat{z} are unit vectors in cylindrical coordinates. Verify Stokes theorem for the surface of a disk of radius R centered at $z=0$ bounded by the circle of radius R and with the same center.
4. Evaluate the integral $\int_{-\infty}^{\infty} f(x) \delta\left(x^{2}-x-6\right) d x$. Warning: Delta function is even $\delta(-x)=$ $\delta(x)=\delta(|x|)$
5. Find eigenvalues and normalized eigenvectors of the matrix

$$
A=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

Express the eigenvectors in terms of $\sin \frac{\theta}{2}$ and $\cos \frac{\theta}{2}$.
6. Prove that $\int_{S} d \vec{a} \times \vec{\nabla} \phi=\oint_{C} \phi d \vec{l}$ where $C=\partial S$. Hint: Take scalar product with arbitrary constant vector \vec{c}.
7. Let A be a linear operator mapping the complex vector V_{3} into itself with the matrix representation $A=\left(\begin{array}{ccc}1 & 2 & -i \\ 2 & 1 & i \\ i & -i & 1\end{array}\right)$ and $\left\{\vec{e}_{i}\right\}, i=1,2,3$ be a set of three basis vectors. This basis is mapped into a new set $\left\{\vec{e}_{i}^{\prime}\right\}$ where $\vec{e}_{i}^{\prime}=\sum_{j=1}^{3} A_{j i} \vec{e}_{j}$ where $A_{i j}$ are the matrix elements of A. Write explicitly the new basis elements $\vec{e}_{1}^{\prime}, \vec{e}_{2}^{\prime}, \vec{e}_{3}^{\prime}$ in terms of $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$. Does the set $\left\{\vec{e}_{i}^{\prime}\right\}$ form a basis?
8. Find all inner products of the two vectors $\vec{x}=\left(\begin{array}{c}1+i \\ 1-i \\ 2\end{array}\right), \vec{y}=\left(\begin{array}{c}1-i \\ 1+i \\ -2\end{array}\right)$.
9. Show that a necessary and sufficient condition for two linear operators A and B to have a simultaneous eigenvector \vec{x} is that they must commute, i.e. $[A, B]=0$.
10. Find the determinant, matrix of cofactors of and inverse of the matrix A where

$$
A=\left(\begin{array}{ccc}
1 & 2 & -3 \\
2 & 5 & -4 \\
-3 & -4 & 8
\end{array}\right)
$$

