P216 Mathematical Physics Quiz 1, October 19 2017, Time: 90 minutes Solve 8 problems out of 10

- 1. If \overrightarrow{A} and \overrightarrow{B} are constant vectors, show that $\overrightarrow{\nabla} \left(\overrightarrow{A} \cdot \left(\overrightarrow{B} \times \overrightarrow{r} \right) \right) = \overrightarrow{A} \times \overrightarrow{B}$. Hint: cyclicity of triple products.
- 2. Consider the vector $\overrightarrow{E} = r^{n-1} \overrightarrow{r}$. Verify Gauss' theorem for the volume and surface of a sphere of radius R.
- 3. Consider the vector $\overrightarrow{A} = \rho \widehat{\varphi} + z \widehat{z}$ where $\widehat{\varphi}$ and \widehat{z} are unit vectors in cylindrical coordinates. Verify Stokes theorem for the surface of a disk of radius R centered at z = 0 bounded by the circle of radius R and with the same center.
- 4. Evaluate the integral $\int_{-\infty}^{\infty} f(x) \, \delta(x^2 x 6) \, dx$. Warning: Delta function is even $\delta(-x) = \delta(|x|)$
- 5. Find eigenvalues and normalized eigenvectors of the matrix

$$A = \left(\begin{array}{cc} \cos\theta & \sin\theta\\ \sin\theta & -\cos\theta \end{array}\right)$$

Express the eigenvectors in terms of $\sin \frac{\theta}{2}$ and $\cos \frac{\theta}{2}$

- 6. Prove that $\int_{S} d\overrightarrow{a} \times \overrightarrow{\nabla} \phi = \oint_{C} \phi d\overrightarrow{l}$ where $C = \partial S$. Hint: Take scalar product with arbitrary constant vector \overrightarrow{c} .
- 7. Let A be a linear operator mapping the complex vector V_3 into itself with the matrix representation $A = \begin{pmatrix} 1 & 2 & -i \\ 2 & 1 & i \\ i & -i & 1 \end{pmatrix}$ and $\{\overrightarrow{e}_i\}$, i = 1, 2, 3 be a set of three basis vectors. This basis

is mapped into a new set $\{\overrightarrow{e}_i'\}$ where $\overrightarrow{e}_i' = \sum_{j=1}^3 A_{ji} \overrightarrow{e}_j$ where A_{ij} are the matrix elements of A. Write explicitly the new basis elements \overrightarrow{e}_1' , \overrightarrow{e}_2' , \overrightarrow{e}_3' in terms of \overrightarrow{e}_1 , \overrightarrow{e}_2 , \overrightarrow{e}_3 . Does the set $\{\overrightarrow{e}_i'\}$ form a basis?

- 8. Find all inner products of the two vectors $\overrightarrow{x} = \begin{pmatrix} 1+i\\ 1-i\\ 2 \end{pmatrix}$, $\overrightarrow{y} = \begin{pmatrix} 1-i\\ 1+i\\ -2 \end{pmatrix}$.
- 9. Show that a necessary and sufficient condition for two linear operators A and B to have a simultaneous eigenvector \vec{x} is that they must commute, i.e. [A, B] = 0.
- 10. Find the determinant, matrix of cofactors of and inverse of the matrix A where

$$A = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 5 & -4 \\ -3 & -4 & 8 \end{pmatrix}$$